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Abstract
This paper makes a generalization of the Ermakov system to obtain the Ermakov
invariant for the case of a variable mass and variable frequency oscillator with
a force quadratic in velocity, and hence find the general solution of a time
dependent damped harmonic oscillator with a force quadratic in velocity.

PACS numbers: 0365, 0230

1. Introduction

During the past decades, several techniques to treat time dependent systems (TDS) were
proposed: among these, the quantum invariant operator method, the propagator method and
the separation of variables treatment are particularly well known. Recently we have discussed
the invariants and propagator for a complex time dependent system with a force quadratic in
velocity [1–4]. In the course of research on TDS, we find that there is an elegant method to
obtain the invariant of TDS, the Ermakov method. Now we shall introduce this method [5] and
make a generalization to obtain the so-called Ermakov invariant for the case of a variable mass
and variable frequency oscillator with a force quadratic in velocity, and hence find the general
solution of a time dependent damped harmonic oscillator with a force quadratic in velocity.

It is only now becoming known that the problem of the time dependent oscillator was first
solved by Ermakov [6] in 1880. Ermakov obtained a first integral of the equation of motion
for the harmonic oscillator with variable frequency

q̈ + ω2(t)q = 0 (1.1)

by introducing the auxiliary equation

ρ̈ + ω2(t)ρ = ρ−3. (1.2)
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Eliminating the ω2 terms from equations (1.1) and (1.2), multiplying by the integrating factor
ρq̇ − ρ̇q and integrating the resulting differential equation, Ermakov obtained the invariant
(first integral)

I = 1

2

[
(ρq̇ − ρ̇q)2 +

(
q

ρ

)2
]

(1.3)

which is usually called the Lewis or Ermakov–Lewis invariant, after Lewis who rediscovered
it in 1966 [7, 8]. A pair of ordinary differential equations which are linked by an invariant,
such as equations (1.1) and (1.2), is now termed an Ermakov system and the invariant, such as
equation (1.3), is termed an Ermakov invariant, which links two functions x(t) and ρ(t) and
provides a nonlinear superposition law [9].

Beginning in 1979, Ray and Reid [5,9,10] generalized the pair of equations (1.1) and (1.2)
to the following pair of equations:

q̈ + ω2(t)q = g(ρ/q)/(ρq2) (1.4)

and

ρ̈ + ω2(t)ρ = f (q/ρ)/(qρ2). (1.5)

By eliminating ω2(t) from equations (1.4) and (1.5) they obtain the invariant

I = 1
2 [φ(q/ρ) + θ(ρ/q) + (ρq̇ − ρ̇q)2] (1.6)

where g(ρ/q) and f (q/ρ) are arbitrary functions of their arguments, and φ(q/ρ) =
2

∫ q/ρ
f (v) dv, θ(ρ/q) = 2

∫ ρ/q
g(w) dw. Now we will show that the Ermakov system

can be further generalized. Since there has been considerable interest in a particle with a
force quadratic in the velocity, we shall consider the general case of the problem of a time
dependent mass and time dependent frequency oscillator with a force quadratic in velocity. In
the following section we shall make a further generalization of the Ermakov method to treat
this rather general TDS.

2. A generalization of the Ermakov system

For the case of a variable mass and variable frequency oscillator with a force quadratic in
velocity, the equation of motion is [1]

ẍ + βẋ +
1

2
γ ẋ2 +

∂V

∂x
= 0. (2.1)

Now we introduce an arbitrary function u(x) and write ∂V
∂x

= ω2(t)u( du
dx

)−1. The reason for
introducing such an arbitrary function is the following consideration, that in the particular
case u = Cx(C = const), ∂V

∂x
= ω2(t)x, ∂V

∂x
corresponds to a harmonic potential with time

dependent frequency. By the requirement of the existence of an invariant we must have [11]

1

2
γ =

(
du

dx

)−1 d2u

dx2
. (2.2)

In this case we find the Ermakov system:

ẍ + βẋ + ẋ2

(
du

dx

)−1 d2u

dx2
+ ω2(t)u

(
du

dx

)−1

= 0 (2.3)

and

ρ̈ + �2(t)ρ = �2
0/ρ

3 (2.4)
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where β = 2ε = Ṁ(t)

M(t)
, M(t) is the time dependent mass, �2(t) = ω2(t) − ε2 − ε̇, ω(t) is

the time dependent frequency and �0 is a constant. Eliminating ω2(t) from equations (2.3)
and (2.4) we obtain

ẍ + βẋ + ẋ2

(
du

dx

)−1 d2u

dx2
+ u

(
du

dx

)−1 (
ε2 + ε̇ +

�2
0

ρ4
− ρ̈

ρ

)
= 0. (2.5)

Multiplying equation (2.5) by the factor ρM1/2(du/dx) and rewriting this equation we get

d

dt
[ρM1/2ẋ(du/dx) − ρ̇M1/2u + ερM1/2u] +

�2
0uM1/2

ρ3
= 0. (2.6)

Multiplying equation (2.6) by the factor [ρM1/2ẋ(du/dx) − (ρ̇ − ερ)M1/2u] and integrating
it, we readily obtain the Ermakov invariant for this case:

I = 1

2

{(
�0uM1/2

ρ

)2

+ [ρM1/2ẋ(du/dx) − (ρ̇ − ερ)M1/2u]2

}
. (2.7)

When u = Cx(C = const), M(t) = M = const, �0 = 1 equations (2.3), (2.4) and (2.7)
reduce to equations (1.1)–(1.3). From equation (2.7) we obtain

I = 1

2




(
�0uM1/2

ρ

)2

+


d(�0uM1/2

ρ
)

�0 dt

ρ2




2

 . (2.8)

Let z = �0uM1/2

ρ
and dφ = �0 dt

ρ2 . Then equation (2.8) becomes

I = 1

2

{
z2 +

[
dz

dφ

]2
}

. (2.9)

Solving equation (2.9) we get

z =
√

2I sin(φ + c) (2.10)

where c is a constant. From equation (2.10) we get

u(x) = ρM− 1
2 (A cos φ + B sin φ) (2.11)

where ρ is a particular solution of the auxiliary equation (2.4), and A and B are constants.
From equation (2.11) we readily obtain the general solution of equation (2.3).

3. Time dependent damped harmonic oscillator with a force quadratic in velocity

If we put

u(x) = 2

γ

[
exp

(γ x

2

)
− 1

]
(3.1)

then
∂V

∂x
= ω2(t)

1 − exp[−(γ /2)x]

γ /2
. (3.2)

This is just the case we discussed in [1]. For this case, when γ → 0, ∂V
∂x

→ ω2x, then
equation (2.1) is just the equation of motion for a damped harmonic oscillator with a force
quadratic in velocity. Substituting equation (3.1) into equation (2.11) we readily obtain the
general solution for this case:

x(t) = 2

γ
ln

[γ

2
ρM− 1

2 (A cos φ + B sin φ) + 1
]
. (3.3)
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When γ → 0, we can neglect terms of order higher than γ 2, then equation (3.3) becomes

x(t) = ρM− 1
2 (A cos φ + B sin φ) − γρ2

4M
(A cos φ + B sin φ)2 (3.4)

where ρ is any particular solution of equation (2.4).

4. A further generalization of the Ermakov system

From the inspiration of the generalization from equations (1.1) and (1.2) to equations (1.4)
and (1.5), we can further generalize equations (2.3) and (2.4) to

ẍ + βẋ + ẋ2

(
du

dx

)−1 d2u

dx2
+ ω2(t)u

(
du

dx

)−1

= g(
ρ

M1/2u
)

ρM1/2 du
dx

(M1/2u)2
(4.1)

and

ρ̈ + �2(t)ρ = 1

M1/2uρ2
f

(
M1/2u

ρ

)
. (4.2)

The corresponding Ermakov invariant can be found to be

I = 1
2 [ρM1/2ẋ(du/dx) − (ρ̇ − ερ)M1/2u]2 +

∫ M1/2u
ρ

f (v) dv +
∫ ρ

M1/2u

g(w) dw. (4.3)

Since u(x) is an arbitrary function of x, f (v) and g(w) are arbitrary functions of their
argument. Hence this generalized Ermakov system should have many applications both
in finding invariants and in solving nonlinear differential equations by using the nonlinear
superposition law. Obviously, when u = Cx(C = const), M(t) = const, equations (4.1)–
(4.3) reduce to equations (1.4)–(1.6).

5. Conclusion

The question of the existence of invariants is one of central importance in the study of any
dynamical system, especially for the TDS. Since the quantum invariant operator method [12]
is particularly useful in treating time dependent systems in quantum mechanics, the Ermakov
method and its generalizations will be of great value in finding invariants of some interesting
TDS. In this paper we have discussed the case of a variable mass and variable frequency
oscillator with a force quadratic in velocity. This force term has been considered by some
authors [13] and it is well known that the case of a variable mass and variable frequency has
been discussed by quite a few authors [14,15]. Thus we have shown that Ermakov’s method is
very powerful for finding the invariant of this very complex TDS. The further generalizations
introduced in the previous section will give further applications in many interesting TDS.
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